中文字幕日韩欧美一区二区三区-亚洲av无码乱码国产精品fc2-欧美激情综合色综合啪啪五月-亚洲av无码久久精品色欲

產品列表PRODUCTS LIST

聯系信息

  • 電話:
    189-2580-2250
  • 傳真:
    18925802250
  • 服務熱線:
    0769-82205353
首頁 > 技術與支持 > ASTM D3424-11
ASTM D3424-11
點擊次數:918 更新時間:2019-08-13

ASTM D3424-11

本頁面標準信息均來源于網絡收集,或由參與標準制定的供應商提供,只作為參考使用,為確保測試結果的準確性、節省您的時間,如需ASTM D3424-11標準詳細信息或ASTM D3424-11具體測試方法,可與我們技術人員聯系或給我們留言,我們將為您提供相關的技術支持。

 

ASTM D3424是印刷品相對日曬色牢度和耐候性評估的標準測試方法:

ASTM D3424描述了印刷品在下列情況下相對日曬色牢度和耐候性的評估程序,涉及自然光曝露測試程序或實驗室加速曝露測試程序。*近的標準版本為2011年修訂的。ASTM D3424-11

kingjo  氙燈試驗箱ASTM D3424測試方法

ASTM D3424測試方法

ASTM D3424英文介紹(節選)

Significance and se

Lightfastness or weatherability for specified periods of time is pertinent for certain types of printed matter such as magazine and book covers, posters and billboards, greeting cards and packages. Since the ability of printed matter to withstand color changes is a function of the spectral-power distribution of the light source to which it is exposed, it is important that lightfastness be assessed under conditions appropriate to the end-use application.

The accelerated procedures covered in these exposure methods provide means for the rapid evaluation of lightfastness or weatherability under laboratory conditions. Test results are useful for specification acceptance between producer and user and for quality control.

The xenon-arc lamp with an appropriate filter system exhibits a spectral-power distribution that corresponds more closely to that of daylight than the carbon-arc. In turn, accelerated tests using xenon-arc apparatus may be expected to correlate better with exposure to natural daylight than do those using carbon-arc apparatus.

To accommodate variations in light intensity among days, seasons, locations, or instruments, duration of exposure is preferably expressed as the radiant exposure in specific bandpasses rather than time. In either case, the inclusion of an appropriate control serves to minimize effects of variations in test conditions.

Color changes are not a linear function of duration of exposure. The preferred method of determining lightfastness or weatherability is to expose the prints for a number of intervals and to assess the time or radiant exposure required to obtain a specified color difference.

For a given printing ink, lightfastness and weatherability or both depend on the type of substrate, the film thickness of the print, and the area printed (solid versus screen). Therefore, it is important that the nature of the test and control specimens correspond to that expected under actual use conditions.

Note 2—Specifications D4302, D5067, and D5098 provide useful guides to the lightfastness of pigments in several types of artists' paints after 1260 MJ/m2 total window glass filtered solar radiant exposure (equivalent to about 2 or 3 months' exposure to window glass filtered solar radiation in accordance with Practice G24 at a tilt angle of 45 degrees). However, because of major differences between printing inks and artists' colors, especially in applied film thickness, it cannot be assumed that the lightfastness categories of printed ink films containing these pigments will be comparable to those indicated in the three specifications.

1. Scope

1.1 This standard describes procedures for the determination of the relative lightfastness and weatherability of printed matter under the following conditions, which involve exposure to natural daylight or accelerated procedures in the laboratory:

1.1.1 Method 1—Daylight behind window glass,

1.1.2 Method 2—Outdoor weathering,

1.1.3 Method 3—Xenon-arc apparatus with window glass filters to simulate daylight behind window glass,

1.1.4 Method 4—Xenon-arc apparatus with water spray and daylight filters to simulate outdoor weathering,

1.1.5 Method 7—Fluorescent lamp apparatus to simulate indoor fluorescent lighting in combination with window-filtered daylight.

1.1.6 Method 8—Fluorescent lamp apparatus operating with fluorescent cool white lamps to simulate indoor fluorescent lighting.

Note 1—Previous versions of this standard included Methods 5 and 6 that are based on enclosed carbon-arc exposures. These methods are described in Appendix X1. The spectral irradiance of the enclosed carbon-arc is a very poor simulation of solar radiation, window glass filtered solar radiation, or the emission of lamps used for interior lighting. In addition, enclosed carbon-arc devices are no longer readily available or commonly used.

1.2 These methods require that a suitable print or other control (reference standard) be run along with the test sample. Color changes due to conditions of exposure may be evaluated by visual examination or instrumental measurement.

1.3 These methods are applicable to prints on any flat substrate including paper, paperboard, metallic foil, metal plate, and plastic film, and are produced by any printing process including letterpress, offset lithography, flexography, gravure, and silk screen.

1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 8.

2. Referenced Documents (purchase separately)

ASTM Standards

D1729 Practice for Visual Appraisal of Colors and Color Differences of Diffusely-Illuminated Opaque Materials

D2244 Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates

D2616 Test Method for Evaluation of Visual Color Difference With a Gray Scale

D4302 Specification for Artists Oil, Resin-Oil, and Alkyd Paints

D4674 Practice for Accelerated Testing for Color Stability of Plastics Exposed to Indoor Office Environments

D5067 Specification for Artists Watercolor Paints

D5098 Specification for Artists Acrylic Dispersion Paints

E284 Terminology of Appearance

E991 Practice for Color Measurement of Fluorescent Specimens sing the One-Monochromator Method

E1331 Test Method for Reflectance Factor and Color by Spectrophotometry sing Hemispherical Geometry

E1347 Test Method for Color and Color-Difference Measurement by Tristimulus Colorimetry

E1349 Test Method for Reflectance Factor and Color by Spectrophotometry sing Bidirectional (45:0 or 0:45) Geometry

G7 Practice for Atmospheric Environmental Exposure Testing of Nonmetallic Materials

G24 Practice for Conducting Exposures to Daylight Filtered Through Glass

G113 Terminology Relating to Natural and Artificial Weathering Tests of Nonmetallic Materials

G151 Practice for Exposing Nonmetallic Materials in Accelerated Test Devices that se Laboratory Light Sources

G153 Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Nonmetallic Materials

G154 Practice for Operating Fluorescent Light Apparatus for V Exposure of Nonmetallic Materials

G155 Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials

上一篇:ASTM D3451-06

下一篇:ASTM D3105

返回列表>>

粵公網安備44190002001386號

主站蜘蛛池模板: 一区二区三区视频| 欧美黑人又粗又大又爽免费| 日韩日韩日韩日韩日韩| 亚洲精品国产精品乱码不卡√ | 久久精品99无色码中文字幕| 欧美尺寸又黑又粗又长| av无码国产在线看免费网站| 日韩精品一区二区三区色欲av| 亚洲av片在线观看| 国产婷婷色一区二区三区| 日韩精品人妻系列无码专区免费 | 欧美激情一区二区三区在线| 久久天堂av综合合色蜜桃网| 色情无码www视频无码区澳门| 狼人香蕉香蕉在线28 - 百度| 国产第一页浮力影院入口| 国产精品视频一区国模私拍| 国产精品人人爽人人做我的可爱| 久久精品午夜福利| 美女扒开腿让男人桶爽30分钟| 午夜dv内射一区区| 性激烈的欧美三级视频| 亚洲 欧美 国产 制服 动漫| 精品久久久久中文字幕日本| 亚洲精品无码久久久久av老牛| 久久人妻少妇嫩草av无码专区 | 精品+无码+在线观看| 久久久噜噜噜www成人网| 丁香花电影高清在线观看 | 色五月丁香五月综合五月亚洲 | 亚洲av日韩av高潮潮喷无码| 全部露出来毛走秀福利视频| 国产在线无码视频一区| 一本一道人人妻人人妻αv| 午夜亚洲www湿好大| 97久久国产亚洲精品超碰热| 在教室伦流澡到高潮hgl视频| 久久亚洲欧美国产精品| 丝袜人妻一区二区三区| 欧美人与动性xxxxx杂性| 亚洲日韩成人无码|